Skip to end of metadata
Go to start of metadata

Build and Install Linux System for pITX-MX8M-PLUS (Dual and Quad Core)


This document provides instructions for advanced users how Embedian offers patches and builds a customized version of u-boot and linux kernel for Embedian's pITX-MX8M-PLUS product platform and how to install the images to bring the evaluation board up and running. 

Our aim is to fully support our hardware through device drivers. We also provide unit tests so that testing a board is easy and custom development can start precisely.

The host Linux machine is recommended Ubuntu 20.04 or 22.04.

Once you have Ubuntu 20.04 or 22.04 LTS running, install the additional required support packages using the following console command:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib build-essential chrpath socat cpio python python3 python3-pip python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 libegl1-mesa libsdl1.2-dev pylint xterm rsync curl zstd lz4 libssl-dev pv device-tree-compiler libghc-gnutls-dev

Availability


pITX-MX8M-PLUS at Embedian

Carrier Board


pITX-IOB-2201 (Expansion IO board for pITX-MX8M-PLUS) at Embedian

Basic Resources


 

ARM Cross Compiler: GCC


This is a pre-built (32bit) version of Linaro GCC that runs on generic linux, so 64bit users need to make sure they have installed the 32bit libraries for their distribution.

debian basedextrapkgs: (sudo apt-get update ; sudo apt-get install xyz)

Ubuntu 20.04

 

ia32-libs

Debian 11 (Bullseye)

sudo dpkg --add-architecture i386

libc6:i386 libstdc++6:i386 libncurses5:i386 zlib1g:i386

Ubuntu 20.10 -> 22.04

 

libc6:i386 libstdc++6:i386 libncurses5:i386 zlib1g:i386

Red Hat/Centos/Fedora

 

libstdc++.i686 ncurses-devel.i686 zlib.i686

Red Hat based (rpm)

extra

pkgs: (yum install xyz)

Red Hat/Centos/Fedora

 

libstdc++.i686 ncurses-devel.i686 zlib.i686

Ubuntu 22.04

 

ia32-libs

Ubuntu 20.10 -> 22.04

 

libc6:i386 libstdc++6:i386 libncurses5:i386 zlib1g:i386


To build Embedian’s pITX-MX8M-PLUS u-boot and linux kernel, you will need to install the following ARM compiler: 

For u-boot 2022.04, you need to use the following Arm compiler. 

$ wget -c https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz

$ sudo tar -Jxvf gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz -C /opt

$ export CC=/opt/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu/bin/aarch64-none-linux-gnu-


Test:

If this test fails, verify that you have the 32bit libraries installed on your development system.

$ ${CC}gcc --version
arm-none-linux-gnueabihf-gcc (GNU Toolchain for the A-profile Architecture 9.2-2019.12 (arm-9.10)) 9.2.1 20191025
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Generating SSH Keys


We recommend you use SSH keys to establish a secure connection between your computer and Embedian Gitlab server. The steps below will walk you through generating an SSH key and then adding the public key to our Gitlab account.

Step 1. Check for SSH keys


First, we need to check for existing ssh keys on your computer. Open up Git Bash and run:

Check the directory listing to see if you have a file named either id_rsa.pub or id_dsa.pub. If you don't have either of those files go to step 2. Otherwise, you already have an existing keypair, and you can skip to step 3.

Step 2. Generate a new SSH key


To generate a new SSH key, enter the code below. We want the default settings so when asked to enter a file in which to save the key, just press enter.

Step 3. Add your SSH key to Embedian Gitlab Server


Copy the key to your clipboard.

Go to Embedian Git Server. At Profile Setting --> SSH Keys --> Add SSH Key 

Paste your public key and press "Add Key" and your are done.

Boot File: flash.bin


The boot file is called flash.bin. It is made up of some pieces of programs. This section instruct you how to generate flash.bin. 

1. Download the imx-mkimage tool and apply Embedian's patch to accept Embedian's device tree blob.

$ git clone https://github.com/nxp-imx/imx-mkimage -b lf-5.15.71_2.2.0

$ cd imx-mkimage

$ wget -c ftp://ftp.embedian.com/public/pitximx8mp/0002-change-uboot-device-tree-name.patch

$ patch -p1 <0002-change-uboot-device-tree-name.patch

$ cd ../

2. Get and Build the ARM Trusted firmware and copy bl31.bin to imx-mkimage/iMX8MP directory.

$ git clone https://github.com/nxp-imx/imx-atf -b lf_v2.6

$ cd imx-atf

 

$ wget -c ftp://ftp.embedian.com/public/pitximx8mp/0002-imx-atf-change-console-to-ttymxc3.patch

 

$ patch -p1 <0002-imx-atf-change-console-to-ttymxc3.patch

$ make CROSS_COMPILE=${CC} PLAT=imx8mp bl31

$ cp build/imx8mp/release/bl31.bin ../imx-mkimage/iMX8M/

$ cd ../

3. Get the DDR firmware and copy to imx-mkimage/iMX8M/ directory.

$ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.18.bin

$ chmod a+x firmware-imx-8.18.bin

$ ./firmware-imx-8.18
enter "y" to accept EULA

$ cd firmware-imx-8.18

$ cp firmware/ddr/synopsys/lpddr4_pmu_train_1d_dmem_202006.bin ../imx-mkimage/iMX8M/
$ cp firmware/ddr/synopsys/lpddr4_pmu_train_1d_imem_202006.bin ../imx-mkimage/iMX8M/
$ cp firmware/ddr/synopsys/lpddr4_pmu_train_2d_dmem_202006.bin ../imx-mkimage/iMX8M/
$ cp firmware/ddr/synopsys/lpddr4_pmu_train_2d_imem_202006.bin ../imx-mkimage/iMX8M/

$ cp firmware/hdmi/cadence/signed_hdmi_imx8m.bin ../imx-mkimage/iMX8M/

$ cd ../

4. Clone the U-Boot source code from Embedian Git Server and copy related files to imx-mkimage/iMX8M/ directory.

Download:

For u-boot v2022.04: 

$ git clone git@git.embedian.com:developer/smarc-t335x-uboot.git v2022.04 -b emb_lf_v2022.04


Configure and Build:

$ make ARCH=arm CROSS_COMPILE=${CC} distclean

$ make ARCH=arm CROSS_COMPILE=${CC} pitximx8mp_4g_defconfig

$ make ARCH=arm CROSS_COMPILE=${CC}

Note1:

If the board is 2GB LPDDR4 in commercial or industrial temperature, use
$ make ARCH=arm CROSS_COMPILE=${CC} pitximx8mp_2g_defconfig

If the board is 4GB LPDDR4, use
$ make ARCH=arm CROSS_COMPILE=${CC} pitximx8mp_4g_defconfig

If the board is 6GB LPDDR4, use
$ make ARCH=arm CROSS_COMPILE=${CC} pitximx8mp_6g_defconfig

Note 2:

The pITX-MX8M-PLUS module always boot up from the on-module eMMC flash. The factory default will be flash.bin pre-installed. In some cases when the eMMC flash is empty or needs to be upgraded. Users can set SW2 port 1-3 as (ON ON ON). In this way, the pITX-MX8M-PLUS module will boot up to carrier microSD card. The flash.bin image for eMMC and microSD card is the same, the difference is how you flash flash.bin and how SW2 port 1-3 is set. This will be explained in the "Setup microSD card" section.

Copy u-boot-nodtb.bin spl/u-boot-spl.bin arch/arm/dts/imx8mp-pitx.dtb to imx-mkimage/iMX8M directory and copy tools/mkimage to imx-mkimage/iMX8M/mkimage_uboot

$ cp u-boot-nodtb.bin spl/u-boot-spl.bin arch/arm/dts/imx8mp-pitx.dtb ../imx-mkimage/iMX8M/

$ cp tools/mkimage ../imx-mkimage/iMX8M/mkimage_uboot

5. Generate flash.bin file.

$ cd ../imx-mkimage

$ make CROSS_COMPILE=${CC} SOC=iMX8MP clean

$ make CROSS_COMPILE=${CC} SOC=iMX8MP flash_evk

The flash.bin file will be located at imx-mkimage/iMX8M directory. Go to "Setup SD Card" section to instruct you how to flash this file into microSD card.

Linux Kernel


Download:

For 5.15.71 (Based on NXP imx_lf-5.15.y official release):

$ git clone git@git.embedian.com:developer/smarc-fsl-linux-kernel.git v5.15.71 -b emb_imx_lf-5.15.y


Configure and Build:

$ make ARCH=arm64 CROSS_COMPILE=${CC} distclean
$ make ARCH=arm64 CROSS_COMPILE=${CC} emb_imx_v8_defconfig
$ make ARCH=arm64 CROSS_COMPILE=${CC} Image modules dtbs

Selecting display configuration is a matter of selecting an appropriate DTB file under arch/arm64/boot/dts/embedian.


All available DTB files are listed in the table below.

 

DTB File NameDescription
imx8mp-pitx.dtbDevice tree blob for no display configuration.
imx8mp-pitx-hdmi.dtbDevice tree blob for HDMI display configuration.
imx8mp-pitx-lvds.dtbDevice tree blob for LVDS display configuration.
imx8mp-pitx-m7.dtbDevice tree blob for Cortex-M7 co-processor configuration.

 

Root File System


Debian 11 Bullseys:

UserPassword
rootroot

Debian 11 Bullseye Download:

$ wget -c ftp://ftp.embedian.com/public/dev/minfs/debian/bulleyes/pitximx8mp-bulleys-arm64.tar.gz

Verify:

$ md5sum pitximx8mp-bulleys-arm64.tar.gz
a446a2a0191b64f895a56cf2dd6ee04c  pitximx8mp-bulleys-arm64.tar.gz


Yocto Kirkstone Build Root File System:

UserPassword
rootN/A

Find the yocto pre-built root file systems here at Embedian's ftp site based on your module CPU variants.

$ wget -c ftp://ftp.embedian.com/public/test/fsl-image-qt6-validation-imx-pitximx8mp4g.tar.bz2

$ md5sum fsl-image-qt6-validation-imx-pitximx8mp4g.tar.bz2

16f7312faa60b3600f4e99cbb1ff7c5e fsl-image-qt6-validation-imx-pitximx8mq4g.tar.bz2

Setup microSD Card


For these instruction, we are assuming: DISK=/dev/mmcblk0, "lsblk" is very useful for determining the device id.

$ export DISK=/dev/mmcblk0

Erase microSD card:

$ sudo dd if=/dev/zero of=${DISK} bs=1M count=160

Create Partition Layout:

With util-linux v2.26, sfdisk was rewritten and is now based on libfdisk.

sfdisk

$ sudo sfdisk --version
sfdisk from util-linux 2.34

Create Partitions:

sfdisk >=2.26.x

Icon
$ sudo sfdisk ${DISK} <<-__EOF__
2M,48M,0x83,*
50M,,,
__EOF__


Format Partitions:

for: DISK=/dev/mmcblk0
$ sudo mkfs.vfat -F 16 ${DISK}p1 -n boot
$ sudo mkfs.ext4 ${DISK}p2 -L rootfs
 
for: DISK=/dev/sdX
$ sudo mkfs.vfat -F 16 ${DISK}1 -n boot
$ sudo mkfs.ext4 ${DISK}2 -L rootfs

Mount Partitions:

On some systems, these partitions may be auto-mounted...

$ sudo mkdir -p /media/boot/
$ sudo mkdir -p /media/rootfs/
 
for: DISK=/dev/mmcblk0
$ sudo mount ${DISK}p1 /media/boot/
$ sudo mount ${DISK}p2 /media/rootfs/
 
for: DISK=/dev/sdX
$ sudo mount ${DISK}1 /media/boot/
$ sudo mount ${DISK}2 /media/rootfs/

Install Boot File

If on-module eMMC Flash is empty

In some cases, when eMMC flash is erased or the u-boot is under development, we need a way to boot from microSD card first. Users need to ser SW2 port 1-3 and (ON ON ON). In this way, pITX-iMX8M-PLUS will always boot up from microSD card. 

Fuse flash.bin to the microSD card. 

~/imx-mkimage


$ sudo dd if=iMX8M/flash.bin of=${DISK} bs=1024 seek=32

If on-module eMMC Flash is not empty

The flash.bin is pre-installed in on-module eMMC flash at factory default. pITX-MX8M-PLUS is designed to always boot up from on-module eMMC flash and to load Image, device tree blob and root file systems based on the setting of SW2 port 1-3. If users need to fuse your own flash.bin or perform u-boot upgrade. This section will instruct you how to do that.

Copy flash.bin to the second partition home directory of your microSD card and boot into microSD card. Go to home directory and you should see flash.bin file (The flash.bin file is located at imx-mkimage/iMX8M/ directory). 


$ sudo cp -v imx-mkimage/iMX8M/flash.bin /media/rootfs/home/root/

Fuse flash.bin to the on-module eMMC flash. (The eMMC flash is emulated as /dev/mmcblk2 in pITX-MX8M-PLUS)

home directory


$ sudo dd if=flash.bin of=/dev/mmcblk2 bs=1024 seek=32

Icon
  1. If your u-boot hasn't been finalized and still under development, it is recommended to set SW2 port 1-3 as (ON ON ON) and boot directly from microSD card first. Once your u-boot is fully tested and finalized, you can fuse your flash.bin to eMMC flash.
  2. When SW2 port1-3 on pITX-MX8M-PLUS is set as (OFF ON OFF), it will always boot up from on-module eMMC flash. U-boot will read the SW2 port 1-3 configuration and determine where it should load Image and device tree blob. When SW2 port 1-3 is set (ON ON ON), it will always boot up from microSD card.

uEnv.txt based bootscript

Create "uEnv.txt" boot script: ($ vim uEnv.txt)

~/uEnv.txt


optargs="video=HDMI-A-1:1920x1080-32@60 consoleblank=0"
#optargs="video=HDMI-A-1:3840x2160-32@30 consoleblank=0"
#optargs="video=HDMI-A-1:3840x2160-32@60 consoleblank=0"
console=ttymxc3,115200 earlycon=ec_imx6q,0x30a60000,115200
mmcdev=1
mmcpart=1
image=Image
loadaddr=0x40480000
fdt_addr=0x43000000
mmcroot=/dev/mmcblk1p2 rw
usbroot=/dev/sda2 rw
mmcrootfstype=ext4 rootwait fixrtc
netdev=eth0
ethact=FEC0
ipaddr=192.168.1.150
serverip=192.168.1.53
gatewayip=192.168.1.254
mmcargs=setenv bootargs ${mcore_clk} console=${console} root=${mmcroot} rootfstype=${mmcrootfstype} ${optargs}
uenvcmd=run loadimage; run loadfdt; run mmcboot
# USB Boot
#usbargs=setenv bootargs console=${console} root=${usbroot} rootfstype=${mmcrootfstype} ${optargs}
#uenvcmd=run loadusbimage; run loadusbfdt; run usbboot

Copy uEnv.txt to the boot partition:

~/


$ sudo cp -v ~/uEnv.txt /media/boot/

Install Kernel Image

Copy Image to the boot partition:

~/v5.15.71


$ sudo cp -v arch/arm/boot/Image /media/boot

Install Kernel Device Tree Binary

$ sudo mkdir -p /media/boot/dtbs

$ sudo cp -v arch/arm/boot/dts/<device tree file> /media/boot/dtbs


All available DTB files are listed in the table below.

DTB File NameDescription
imx8mp-pitx.dtbDevice tree blob for no display configuration.
imx8mp-pitx-hdmi.dtbDevice tree blob for HDMI display configuration.
imx8mp-pitx-lvds.dtbDevice tree blob for LVDS display configuration.
imx8mp-pitx-m7.dtbDevice tree blob for Cortex-M7 co-processor configuration.

The device tree name in your microSD card has be to imx8mp-pitx.dtb

Install Root File System and Kernel Modules


Copy Root File System:

Yocto Pre-Built Rootfs:

directory where your root file system is


$ sudo tar jxvf <filename.tar.bz2> -C /media/rootfs


Debian 11 Bulleyes:

directory where your root file system is


$ sudo tar xvfz imx8mp-bulleys-arm64.tar.gz -C /media/rootfs

Copy Kernel Modules:

~/smarc-fsl-linux-kernel


$ sudo make ARCH=arm64 CROSS_COMPILE=${CC} INSTALL_MOD_PATH=/media/rootfs modules_install

Note

Icon
  1. MAC address is factory pre-installed at on board I2C EEPROM at offset 60 bytes. It starts with Embedian's vendor code 10:0D:32. u-boot will read it and pass this parameter to kernel.
  2. If your rootfs is yocto built, the kernel modules will be included in the rootfs.

Networking:

Edit: /etc/network/interfaces

$ sudo vim /media/rootfs/etc/network/interfaces

Add:

/media/rootfs/etc/network/interfaces


auto lo
iface lo inet loopback
 
auto eth0
iface eth0 inet dhcp


Remove microSD card:

$ sync
$ sudo umount /media/boot
$ sudo umount /media/rootfs

Setup eMMC


Setting up eMMC usually is the last step at development stage after the development work is done at your microSD card or NFS environments. From software point of view, eMMC is nothing but a non-removable SD card on board. For pITX-MX8M-PLUS, the microSD card is always emulated as /dev/mmcblk1 and on-module eMMC is always emulated as /dev/mmcblk2. Setting up eMMC now is nothing but changing the device descriptor. 

This section gives a step-by-step procedure to setup eMMC flash. Users can write a shell script your own at production to simplify the steps.

First, we need to backup the final firmware from your microSD card or NFS.

Prepare for eMMC binaries from microSD card (or NFS):

Insert microSD card into your Linux PC. For these instructions, we are assuming: DISK=/dev/mmcblk0, "lsblk" is very useful for determining the device id.

For these instruction, we are assuming: DISK=/dev/mmcblk0, "lsblk" is very useful for determining the device id.

$ export DISK=/dev/mmcblk0

Mount Partitions:

On some systems, these partitions may be auto-mounted...

$ sudo mkdir -p /media/boot/
$ sudo mkdir -p /media/rootfs/
 
for: DISK=/dev/mmcblk0
$ sudo mount ${DISK}p1 /media/boot/
$ sudo mount ${DISK}p2 /media/rootfs/
 
for: DISK=/dev/sdX
$ sudo mount ${DISK}1 /media/boot/
$ sudo mount ${DISK}2 /media/rootfs/

 

Copy Image to rootfs partition:

$ sudo cp -v /media/boot/Image /media/rootfs/home/root

Note

Icon
  1. If your rootfs is Debian Bulleyes, copy to /media/rootfs/home/user instead of /media/rootfs/home/root


Copy uEnv.txt to rootfs partition:

Copy and paste the following contents to /media/rootfs/home/root ($ sudo vim /media/rootfs/home/root/uEnv.txt)

optargs="video=HDMI-A-1:1920x1080-32@60 consoleblank=0"
#optargs="video=HDMI-A-1:3840x2160-32@30 consoleblank=0"
#optargs="video=HDMI-A-1:3840x2160-32@60 consoleblank=0"
console=ttymxc3,115200 earlycon=ec_imx6q,0x30a60000,115200
mmcdev=2
mmcpart=1
image=Image
loadaddr=0x40480000
fdt_addr=0x43000000
mmcroot=/dev/mmcblk2p2 rw
usbroot=/dev/sda2 rw
mmcrootfstype=ext4 rootwait fixrtc
netdev=eth0
ethact=FEC0
ipaddr=192.168.1.150
serverip=192.168.1.53
gatewayip=192.168.1.254
mmcargs=setenv bootargs ${mcore_clk} console=${console} root=${mmcroot} rootfstype=${mmcrootfstype} ${optargs}
uenvcmd=run loadimage; run loadfdt; run mmcboot
# USB Boot
#usbargs=setenv bootargs console=${console} root=${usbroot} rootfstype=${mmcrootfstype} ${optargs}
#uenvcmd=run loadusbimage; run loadusbfdt; run usbboot

 

Copy device tree blob to rootfs partition:

$ sudo cp -v /media/boot/dtbs/<device tree name> /media/rootfs/home/root/imx8mp-pitx.dtb


Copy boot file to rootfs partition:

~/imx-mkimage

$ sudo cp -v iMX8M/flash.bin /media/rootfs/home/root/flash.bin


Copy real rootfs to rootfs partition:

Yocto Built Root File Systems

$ pushd /media/rootfs

$ sudo tar cvfz ~/pitximx8mp-emmc-rootfs.tar.gz .

$ sudo mv ~/pitximx8mp-emmc-rootfs.tar.gz /media/rootfs/home/root

$ popd

Debiab Bulleyes Root File Systems

$ pushd /media/rootfs

$ sudo tar cvfz ~/pitximx8mp-emmc-rootfs.tar.gz .

$ sudo mv ~/pitximx8mp-emmc-rootfs.tar.gz /media/rootfs/home/root

$ popd


Unmount microSD card.

$ sync
$ sudo umount /media/boot
$ sudo umount /media/rootfs

It is safe to remove microSD card now.

Copy Binaries to eMMC from microSD card:

Insert this microSD card into your pITX-MX8M-PLUS device and boot into SD card.

Now it will be almost the same as you did when setup your microSD card, but the eMMC device descriptor is /dev/mmcblk2 now.

$ export DISK=/dev/mmcblk2

Erase microSD card:

$ sudo dd if=/dev/zero of=${DISK} bs=1M count=160

Create Partition Layout:

$ sudo sfdisk ${DISK} <<-__EOF__

2M,48M,0x83,*
50M,,,
__EOF__

Format Partitions:

$ sudo mkfs.vfat -F 16 ${DISK}p1 -n boot
$ sudo mkfs.ext4 ${DISK}p2 -L rootfs

Mount Partitions:

$ sudo mkdir -p /media/boot/
$ sudo mkdir -p /media/rootfs/
$ sudo mount ${DISK}p1 /media/boot/
$ sudo mount ${DISK}p2 /media/rootfs/

Install binaries for partition 1

Copy uEnv.txt/Image/*.dtb to the boot partition


$ sudo cp -v Image uEnv.txt /media/boot/

Install Kernel Device Tree Binary

$ sudo mkdir -p /media/boot/dtbs

$ sudo cp imx8mp-pitx.dtb /media/boot/dtbs

Install Root File System


$ sudo tar -zxvf pitximx8mp-emmc-rootfs.tar.gz -C /media/rootfs

 

Unmount eMMC:

$ sync
$ sudo umount /media/boot
$ sudo umount /media/rootfs

 

Flash boot file


$ sudo dd if=flash.bin of=${DISK} bs=1024 seek=32

Switch your Boot Select to eMMC and you will be able to boot up from eMMC now.

 

Video Decoding


 For playing video, we can use three solutions to support it. 

a) # gplay-1.0 <video file>

b) # gst-launch-1.0 playbin uri=file://<video absolute path>

c) ( i ) if video container on .mp4 format

          # gst-launch-1.0 filesrc location=<file name.mp4> typefind=true ! video/quicktime ! qtdemux ! queue max-size-time=0 ! vpudec ! queue max-size-time=0 ! kmssink force-hantrope=true sync=false &

    ( ii ) if video container on .ts format

         # gst-launch-1.0 filesrc location=<file name.ts> typefind=true ! video/mpegts ! tsdemux ! queue max-size-time=0 ! vpudec ! queue max-size-time=0 ! waylandsink

 

WiFi 


The BSP includes NXP 88W8997 wifi chipset. Users can choose mPCIe or M.2 key E form factor wifi modules based on NXP 88W8997 chipset.  

M.2 Form Factor:

  • AzureWave P/N: AW-CM276MA-PUR
  • Laird Connectivity P/N: 60-2230C
  • Embedded Artists 1YM M.2 Module

mPCIe Factor:

  • Globascale Technologies NXP 88W8997 2x2 WiFi 802.11ac+BT 5.0 mini PCIe Card w/ Two External SMA Antennas

Boot up the device and load the driver modules in the kernel.

root@pitximx8mp4g:~# modprobe moal mod_para=nxp/wifi_mod_para.conf
[ 33.834782] can2-stby: disabling
[ 33.838051] VSD1_3V3: disabling

[ 33.979809] wlan: Loading MWLAN driver
[ 33.984701] wlan_pcie 0000:01:00.0: enabling device (0000 -> 0002)
[ 33.991014] Attach moal handle ops, card interface type: 0x204
[ 34.000829] PCIE8997: init module param from usr cfg
[ 34.005845] card_type: PCIE8997, config block: 0
[ 34.010483] cfg80211_wext=0xf
[ 34.013465] wfd_name=p2p
[ 34.016011] max_vir_bss=1
[ 34.018632] cal_data_cfg=none
[ 34.021611] drv_mode = 7
[ 34.024159] ps_mode = 2
[ 34.026604] auto_ds = 2
[ 34.029084] fw_name=nxp/pcieuart8997_combo_v4.bin
[ 34.033830] rx_work=1 cpu_num=4
[ 34.037010] Attach mlan adapter operations.card_type is 0x204.
[ 34.046917] Request firmware: nxp/pcieuart8997_combo_v4.bin
[ 35.013725] FW download over, size 627620 bytes
[ 35.879247] WLAN FW is active
[ 35.882226] on_time is 35807347500
[ 35.917890] fw_cap_info=0x18fcffa3, dev_cap_mask=0xffffffff
[ 35.923500] max_p2p_conn = 8, max_sta_conn = 8
[ 35.956580] wlan: version = PCIE8997-16.68.10.p16-MXM5X16214-GPL-(FP92)
[ 35.966307] wlan: Driver loaded successfully
root@pitximx8mp4g:~#

 Verify that the module is now visible to the system. 

root@pitximx8mp4g:~# ifconfig -a
can0: flags=128<NOARP> mtu 16
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 10 (UNSPEC)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
device interrupt 35

can1: flags=128<NOARP> mtu 16
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 10 (UNSPEC)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
device interrupt 36

eth0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether 10:0d:32:01:00:01 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether 10:0d:32:02:00:01 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
device interrupt 54

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 3452 bytes 216146 (211.0 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 3452 bytes 216146 (211.0 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

mlan0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether 4a:6b:15:b3:7f:a4 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

p2p0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether 2a:08:86:b1:27:cb txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

uap0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether 5a:57:c4:46:2b:68 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@pitximx8mp4g:~#

 In case you need to see which network and you can scan it and select the one you need. 

root@pitximx8mp4g:~# iwlist mlan0 scan
mlan0 Scan completed :
Cell 01 - Address: D8:FE:E3:5F:68:98
ESSID:"Risetek"
Mode:Master
Frequency=2.412 GHz (Channel 1)

Identify the network and add it to the WPA supplicant file. 

root@pitximx8mp4g:~# vim /etc/wpa_supplicant.conf

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1

network={
scan_ssid=1
ssid="embedian"
psk="xxxxxxxxxx"
}

 Associate the Wi-Fi with config

root@pitximx8mp4g:~# wpa_supplicant -B -i mlan0 -c /etc/wpa_supplicant.conf
Successfully initialized wpa_supplicant
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
nl80211: kernel reports: Match already configured
rfkill: Cannot open RFKILL control device
root@pitximx8mp4g:~#

Check if you have right SSID associated.

root@pitximx8mp4g:~# iwconfig mlan0
mlan0 IEEE 802.11-DS ESSID:"embedian" [14]
Mode:Managed Frequency=5.745 GHz Access Point: 48:EE:0C:ED:D7:38
Bit Rate:6.5 Mb/s Tx-Power=24 dBm
Retry limit:9 RTS thr=2347 B Fragment thr=2346 B
Encryption key:****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-****-**** Security mode:open
Power Management:off
Link Quality=3/5 Signal level=-66 dBm Noise level=-91 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:27439
Tx excessive retries:8 Invalid misc:24 Missed beacon:0

root@pitximx8mp4g:~#

 Use DHCP to get IP

root@pitximx8mp4g:~# udhcpc -i mlan0
udhcpc: started, v1.32.0
udhcpc: sending discover
udhcpc: sending select for 192.168.1.57
udhcpc: lease of 192.168.1.57 obtained, lease time 86400
/etc/udhcpc.d/50default: Adding DNS 192.168.1.254
root@pitximx8mp4g:~#

You should be able to ping local network now.

root@pitximx8mp4g:~# ping 192.168.1.10
PING 192.168.1.10 (192.168.1.10) 56(84) bytes of data.
64 bytes from 192.168.1.10: icmp_seq=1 ttl=64 time=2141 ms
64 bytes from 192.168.1.10: icmp_seq=2 ttl=64 time=1120 ms
64 bytes from 192.168.1.10: icmp_seq=3 ttl=64 time=95.7 ms
64 bytes from 192.168.1.10: icmp_seq=4 ttl=64 time=1.63 ms

 Modify /etc/resolv.conf of your preference, you will be able to ping out.

root@pitximx8mp4g:~# vim /etc/resolv.conf

nameserver 8.8.8.8
nameserver 8.8.4.4

root@pitximx8mp4g:/etc# ping www.google.com
PING www.google.com (172.217.163.36) 56(84) bytes of data.
64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=1 ttl=117 time=7.23 ms
64 bytes from tsa01s13-in-f4.1e100.net (172.217.163.36): icmp_seq=2 ttl=117 time=39.7 ms
64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=3 ttl=117 time=7.50 ms
64 bytes from tsa01s13-in-f4.1e100.net (172.217.163.36): icmp_seq=4 ttl=117 time=5.29 ms
64 bytes from tsa01s13-in-f4.1e100.net (172.217.163.36): icmp_seq=5 ttl=117 time=4.65 ms
64 bytes from tsa01s13-in-f4.1e100.net (172.217.163.36): icmp_seq=6 ttl=117 time=5.01 ms

--- www.google.com ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5010ms
rtt min/avg/max/mdev = 4.649/11.560/39.682/12.623 ms

 

version 1.0a, 08/10/2023

Last updated 2023-08-10

  • No labels