On this page:

Building Freescale/Embedian’s Yocto BSP Distribution

Eric Lee

version 1.0a, 8/08/2017



This document describes how Embedian builds a customized version of Freescale’s i.MX7 official BSP release for Embedian's SMARC-FiMX7 product platform. The approach is to pull from Embedian's public facing GIT repository and build that using bitbake. The reason why we use this approach is that it allows co-development. The build output is comprised of binary images, feed packages, and an SDK for SMARC-FiMX7 specific development.


Freescale makes their i.MX series official bsp build scripts available via the following GIT repository:



Freescale community BSP release build script is available via the following repository: 



It is this repository that actually pulls in the fsl-bsp-release project to perform the Linux BSP builds for Freescale's i.MX7 ARM Cortext-A7 chips.  

Generating SSH Keys

 We recommend you use SSH keys to establish a secure connection between your computer and Embedian Gitlab server. The steps below will walk you through generating an SSH key and then adding the public key to our Gitlab account. 

Step 1. Check for SSH keys

First, we need to check for existing ssh keys on your computer. Open up Git Bash and run: 

$ cd ~/.ssh
$ ls
# Lists the files in your .ssh directory

 Check the directory listing to see if you have a file named either id_rsa.pub or id_dsa.pub. If you don't have either of those files go to step 2. Otherwise, you already have an existing keypair, and you can skip to step 3. 

Step 2. Generate a new SSH key

 To generate a new SSH key, enter the code below. We want the default settings so when asked to enter a file in which to save the key, just press enter.

$ ssh-keygen -t rsa -C "your_email@example.com"
# Creates a new ssh key, using the provided email as a label
# Generating public/private rsa key pair.
# Enter file in which to save the key (/c/Users/you/.ssh/id_rsa): [Press enter]
$ ssh-add id_rsa

 Now you need to enter a passphrase.

Enter passphrase (empty for no passphrase): [Type a passphrase]
Enter same passphrase again: [Type passphrase again]

 Which should give you something like this:

Your identification has been saved in /c/Users/you/.ssh/id_rsa.
Your public key has been saved in /c/Users/you/.ssh/id_rsa.pub.
The key fingerprint is:
01:0f:f4:3b:ca:85:d6:17:a1:7d:f0:68:9d:f0:a2:db your_email@example.com

Step 3. Add your SSH key to Embedian Gitlab Server

 Copy the key to your clipboard.

$ cat ~/.ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAABDAQABAAABAQDQUEnh8uGpfxaZVU6+uE4bsDrs/tEE5/BPW7jMAxak
6jlxSFnKcONAcfMTWkTXeG/OgeGeG5kZdtqryRtOlGmOeuQe1dd3I+Zz3JyT your_email@example.c

Go to Embedian Git Server. At Profile Setting --> SSH Keys --> Add SSH Key 

Paste your public key and press "Add Key" and your are done.

Overview of the meta-smarcfimx7 Yocto Layer

The supplied meta-emb-smarc Yocto compliant layer has the following organization:

|-- conf
|   |-- layer.conf
|   |-- site.conf
|   |-- machine
|       |-- imx7ssmarc.conf
|   |   `-- imx7dsmarc.conf
|-- recipes-bsp
|   |-- u-boot
|       `-- u-boot-smarcfimx7_2016.03-smarcfimx7.bb
|-- recipes-connectivity
|   |-- lftp
|       `–lftp_4.6.3a.bb
|-- recipes-core
|   |-- busybox
|       `-- busybox_%.bbappend
|       |   |-- busybox
|       |   |   `-- defconfig

|   |-- init-ifupdown
|       `-- init-ifupdown_%.bbappend
|       |-- init-ifupdown
      |   |-- interfaces
          `-- init

|   |-- initscripts
|       `-- initscripts_%.bbappend
|       |-- arm
      |   |-- aarch64
|       |   |   `-- alignment.sh
|   |-- sysvinit
|       `-- sysvinit-inittab_2.88dsf.bbappend
|       |   |-- sysvinit-inittab
|       |   |   |-- mx7
|       |   |   |   `-- rc_mxc.S
|-- recipes-fsl

|   |-- images
|   |   |-- imx7smarc-fsl-image-gui.bb
|   |   |-- imx7smarc-fsl-image-gui-dev.bb
|   |   |-- imx7smarc-fsl-image-qt5.bb
|   |   `-- imx7smarc-fsl-image-qt5-dev.bb
|-- recipes-devtools
|   |-- nodejs
|   |   |-- nodejs_0.10.11.bb
|   |   |-- nodejs_0.10.17.bb
|   |   |-- nodejs_0.10.4.bb
|   |   |-- nodejs_0.8.14.bb
|   |   `-- nodejs_0.8.21.bb
|-- recipes-kernel
|   |-- linux
|       |-- linux-smarcfimx7_4.1.15.bb
|       `-- linux-smarcfimx7_%.bbappend
|       |-- linux-smarcfim76-4.1.15
|           `-- defconfig
|   |-- linux-libc-headers
|       |-- linux-libc-headers.inc

|       `-- linux-libc-headers_4.1.bb
`-- recipes-support
|   |-- boost
|   |   |-- boost_1.53.0.bb
|   |   |-- boost.inc
|   |   `-- files
    `-- ntp
        |-- files
        |-- ntp_4.2.6p5.bb
        `-- ntp.inc


Notes on meta-smarcfimx7 layer content


This folder contains the machine definitions for the imx7ssmarc|imx7dsmarc platform and backup repository in Embedian. These select the associated kernel, kernel config, u-boot, u-boot config, and tar.gz image settings.


This folder contains recipes used to build DAS U-boot for imx7ssmarc|imx7dsmarc platform.


This folder remove telnetd from bysybox for imx7ssmarc|imx7dsmarc platform. 


These recipes are used to create the final target images for the devices. When you run Bitbake one of these recipes would be specified. For example, to build the root file system for the imx7dsmarc platform:

MACHINE=imx7dsmarc bitbake -k imx7smarc-fsl-image-qt5


This recipe is used to amend device network interfaces


This recipe is used to amend device console interfaces


These recipes build the Node.js Javascript server execution environment.


Contains the recipes needed to build the imx7ssmarc|imx7dsmarc Linux kernels.


Adds Boost to the images. Boost provides various C++ libraries that encourage cross-platform development. 


Network time protocol support. 

Setting Up the Tools and Build Environment

To build the latest Freescale i.MX7 fsl-bsp-release, you first need an Ubuntu 14.04LTS installation. Since bitbake does not accept building images using root privileges, please do not login as a root user when performing the instructions in this section. 

Once you have Ubuntu 14.04LTS running, install the additional required support packages using the following console command:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo build-essential chrpath libsdl1.2-dev xterm python-m2crypto bc libsdl1.2-dev 

If you are using a 64-bit Linux, then you'd also need to install 32-bit support libraries, needed by the pre-built Linaro toolchain and other binary tools.

$ sudo dpkg --add-architecture i386
$ sudo apt-get update
$ sudo apt-get install curl g++-multilib gcc-multilib lib32z1-dev libcrypto++9:i386 libcrypto++-dev:i386 liblzo2-dev:i386 libusb-1.0-0:i386 libusb-1.0-0-dev:i386 uuid-dev:i386

If you saw error like the following after running "sudo dpkg --add-architecture i386"

pkg: error: unknown option --add-architecture

make sure the only file present in /etc/dpkg/dpkg.cfg.d/ is "multiarch"

ls /etc/dpkg/dpkg.cfg.d/

if output is


execute the following commands as it is else replace "multiarch" with the name of file present in that directory.

$ sudo sh -c "echo 'foreign-architecture i386' > /etc/dpkg/dpkg.cfg.d/multiarch"

The above command will add i386 architecture.

You’ll also need to change the default shell to bash from Ubuntu’s default dash shell (select the <No> option):

$ sudo dpkg-reconfigure dash

To get the BSP you need to have 'repo' installed and use it as:

Install the 'repo' utility:

$ mkdir ~/bin
$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ PATH=${PATH}:~/bin 

Download the BSP Yocto Project Environment.
$ mkdir ~/smarc-fimx7-bsp-release
$ cd ~/smarc-fimx7-bsp-release
$ repo init -u git://git.freescale.com/imx/fsl-arm-yocto-bsp.git -b imx-4.1-krogoth
$ repo sync

Download the Embedian Yocto build script and meta layer.


$ wget ftp://ftp.embedian.com/public/dev/minfs/smarc-fimx7-bsp-release/smarc-setup-release.sh
$ chmod 444 smarc-setup-release.sh
$ cd sources
$ git clone git@git.embedian.com:developer/meta-smarcfimx7.git
$ cd ~/smarc-fimx7-bsp-release
$ DISTRO=fsl-imx-fb MACHINE=imx7dsmarc source smarc-setup-release.sh -b imx7d-qt5fb 
This script will create and bring you to ~/smarc-fimx7-bsp-release/imx7d-qt5fb


The last line of the above script

$ DISTRO=<distro name> MACHINE=<machine name> source fsl-setup-release.sh -b <build dir>
  1. <distro name> 
    • fsl-imx-x11 - Only X11 graphics
    • fsl-imx-wayland - Wayland weston graphics
    • fsl-imx-xwayland - Wayland graphics and X11. X11 applications using EGL are not supported
    • fsl-imx-fb - Frame Buffer graphics - no X11 or Wayland
  2. <machine name>
    • imx7dsmarc - if your SMARC-FiMX7 is a dual core CPU
    • imx7ssmarc - if your SMARC-FiMX7 is a solo core CPU

The default console debug port is SER3.

In this document, we will use imx7dsmarc as the example of machine name. Users need to change different machine name if you have different SMARC card variants.

Building the target platforms
 To build Embedian/Freescale Yocto BSP, use the following commands:

$ MACHINE=imx7dsmarc bitbake -k imx7smarc-fsl-image-qt5
$ MACHINE=imx7dsmarc bitbake -k imx7smarc-fsl-image-gui 

imx7smarc-fsl-image-gui provides a gui image without QT5.
imx7smarc-fsl-image-qt5 provides a Qt5 image for X11, wayland or FB backends depending on your distro name.
If your machine name is imx7dsmarc and your gui image is without QT5 , the following command gives you as an example.
$ MACHINE=imx7dsmarc bitbake -k imx7smarc-fsl-image-gui
The first build takes time. 


Once it done, you can find all required images under ~/smarc-fimx7-bsp-release/<build directory>/tmp/deploy/images/<machine name>/

You may want to build programs that aren’t installed into a root file system so you can make them available via a feed site (described below.) To do this you can build the package directly and then build the package named package-index to add the new package to the feed site.


The following example builds the minicom program and makes it available on the feed site:

$ MACHINE=imx7dsmarc bitbake tcpdump 
$ MACHINE=imx7dsmarc bitbake package-index

Once the build(s) are completed you’ll find the resulting images, rpm and licenses in folder ~/smarc-fimx7-bsp-release/<build directory>/tmp/deploy.

deploy/images/<machine name>/* 

This folder contains the binary images for the root file system and the Embedian SMARC-FiMX7 specific version of the u-boot, zImage and device tree file. Specifically the images are:

deploy/images/<machine name>/u-boot.imx 

This u-boot bootloader binary for SMARC-FiMX7

deploy/images/<machine name>/zImage

The kernel zImage for SMARC-FiMX7.  

deploy/images/<machine name>/zImage-imx7d-smarcfimx7.dtb

The device tree binary file for SMARC-FiMX7 Dual core. 

 deploy/images/<machine name>/zImage-imx7s-smarcfimx7.dtb 

The device tree binary file for SMARC-FiMX7 Solo core. 

deploy/images/<machine name>/imx7smarc-fsl-image-gui-imx7dsmarc.*

Embedian root file system images for software development on Embedian’s SMARC-FiMX7 Dual core platforms without QT5.

deploy/images/<machine name>/imx7smarc-fsl-image-qt5-imx7dsmarc.*

Embedian root file system images for software development on Embedian’s SMARC-FiMX7 Dual core platforms with QT5.

deploy/images/<machine name>/imx7smarc-fsl-image-gui-imx7ssmarc.* 

Embedian root file system images for software development on Embedian’s SMARC-FiMX7 Solo core platforms without QT5.

 deploy/images/<machine name>/imx7smarc-fsl-image-qt5-imx7ssmarc.*

Embedian root file system images for software development on Embedian’s SMARC-FiMX7 Solo core platforms with QT5. 


 This folder contains all the packages used to construct the root file system images. They are in rpm format (similar format to Fedora packages) and can be dynamically installed on the target platform via a properly  constructed feed file. Here is an example of the feed file (named imx7d_qt5fb_update.repo) that is used internally at Embedian to install upgrades onto a imx7dsmarc QT5 platform directly on framebuffer without reflashing the file system:

type = rpm-md
baseurl = http://www.embedian.com/smarcfimx7-yocto-feed/imx7dsmarc/fb/qt5/all
type = rpm-md
baseurl = http://www.embedian.com/smarcfimx7-yocto-feed/imx7dsmarc/fb/qt5/cortexa7hf_vfp_neon
type = rpm-md
baseurl = http://www.embedian.com/smarcfimx7-yocto-feed/imx7dsmarc/fb/qt5/cortexa7hf_vfp_neon_mx7
type = rpm-md
baseurl = http://www.embedian.com/smarcfimx7-yocto-feed/imx7dsmarc/fb/qt5/imx7dsmarc

A database of all licenses used in all packages built for the system.

Setup SD Card

For these instruction, we are assuming: DISK=/dev/mmcblk0, "lsblk" is very useful for determining the device id.

$ export DISK=/dev/mmcblk0

Erase SD card:

$ sudo dd if=/dev/zero of=${DISK} bs=1M count=16

Create Partitions:

$ sudo sfdisk ${DISK} <<-__EOF__
$ sudo sfdisk --in-order --Linux --unit M ${DISK} <<-__EOF__

Format Partitions:

for: DISK=/dev/mmcblk0
$ sudo mkfs.vfat -F 16 ${DISK}p1 -n boot
$ sudo mkfs.ext4 ${DISK}p2 -L rootfs
for: DISK=/dev/sdX
$ sudo mkfs.vfat -F 16 ${DISK}1 -n boot
$ sudo mkfs.ext4 ${DISK}2 -L rootfs

Mount Partitions:

On some systems, these partitions may be auto-mounted...

$ sudo mkdir -p /media/boot/
$ sudo mkdir -p /media/rootfs/
for: DISK=/dev/mmcblk0
$ sudo mount ${DISK}p1 /media/boot/
$ sudo mount ${DISK}p2 /media/rootfs/
for: DISK=/dev/sdX
$ sudo mount ${DISK}1 /media/boot/
$ sudo mount ${DISK}2 /media/rootfs/

Install Bootloader

If SPI NOR Flash is not empty

The u-boot.imx is pre-installed in SPI NOR flash at factory default. SMARC-FiMX7 is designed to always boot up from SPI NOR flash and to load zImage, device tree blob and root file systems based on the setting of BOOT_SEL. If users need to fuse their own u-boot or perform u-boot upgrade. This section will instruct you how to do that.

 Copy u-boot.imx to the boot partition.

$ sudo cp -v u-boot.imx /media/boot/u-boot.imx

Fuse u-boot.imx to the SPI NOR flash.

Stop at U-Boot command prompt (Press any key when booting up). Copy and Paste the following script under u-boot command prompt.

U-Boot# mmc rescan; mmc dev; load mmc 0:1 0x90800000 u-boot.imx; sf probe; sleep 2; sf erase 0 0xc0000; sf write 0x90800000 0x400 80000

If SPI NOR Flash is empty

In some cases, when SPI NOR flash is erased or the u-boot is under development, we need a way to boot from SD card first. Users need to shunt cross the TEST# pin to ground. In this way, SMARC-FiMX7 will always boot up from SD card. 

 Copy u-boot.imx to the boot partition

$ sudo dd if=u-boot.imx of=${DISK} bs=512 seek=2 
  1. If your u-boot hasn't been finalized and still under development, it is recommended to shunt cross the test pin and boot directly from SD card first. Once your u-boot is fully tested and finalized, you can fuse your u-boot to SPI NOR flash.
  2. When TEST# pin of SMARC-FiMX7 is not shunt crossed, it will always boot up from SPI NOR flash. U-boot will read the BOOT_SEL configuration and determine where it should load zImage and device tree blob. When TEST# is shunt crossed (pull low), it will always boot up from SD card.

uEnv.txt based bootscript

Create "uEnv.txt" boot script: ($ vim uEnv.txt)

mmcroot=/dev/mmcblk0p2 ro
mmcrootfstype=ext4 rootwait fixrtc
mmcargs=setenv bootargs console=${console} root=${mmcroot} rootfstype=${mmcrootfstype} ${optargs}
uenvcmd=run loadzimage; run loadfdt; run mmcboot

Copy uEnv.txt to the boot partition:

$ sudo cp -v ~/uEnv.txt /media/boot/

Install Kernel zImage

Copy zImage to the boot partition:

$ sudo cp -v zImage /media/boot

Install Kernel Device Tree Binary

$ sudo mkdir -p /media/boot/dtbs
$ sudo cp -v zImage-imx7d-smarcfimx7.dtb /media/boot/dtbs/imx7d-smarcfimx7.dtb
$ sudo cp -v zImage-imx7s-smarcfimx7.dtb /media/boot/dtbs/imx7s-smarcfimx7.dtb

Install Root File System

Copy Root File System:

Yocto Built Rootfs:

$ sudo tar jxvf <filename.tar.bz2> -C /media/rootfs
  1. SMARC-FiMX7 always boots up to SPI flash first. The firmware in SPI flash is factory pre-installed from Embedian. It will read the BOOT_SEL configuration that defined by SMARC specification on your carrier board and load u-boot.bin from the partition one of the device (could be SD card, eMMC, GBE,..etc) that you selected to memory.
  2. MAC address is factory pre-installed at on board I2C EEPROM at offset 60 bytes. It starts with Embedian's vendor code 10:0D:32. u-boot will read it and pass this parameter to kernel.
  3. The kernel modules is included in the Yocto rootfs.

Remove SD card:

$ sync
$ sudo umount /media/boot
$ sudo umount /media/rootfs

Feed Packages 

The following procedure can be used on a Embedian SMARC-FiMX7 device to download and utilize the feed file show above to install the tcpdump Ethernet packet analyzer program:

$ smart channel -y --add http://www.embedian.com/smarcfimx7-yocto-feed/imx7d_qt5fb_update.repo
$ smart update
$ smart install tcpdump


Writing Bitbake Recipes

In order to package your application and include it in the root filesystem image, you must write a BitBake recipe for it.

When starting from scratch, it is easiest to learn by example from existing recipes. 

Example HelloWorld recipe using autotools

For software that uses autotools (./configure; make; make install), writing recipes can be very simple:


DESCRIPTION = "Hello World Recipe using autotools"
SECTION = "console/utils"
PRIORITY = "optional"
PR = "r0"
S = "${WORKDIR}/git"
inherit autotools


SRC_URI specifies the location to download the source from. It can take the form of any standard URL using http://, ftp://, etc. It can also fetch from SCM systems, such as git in the example above.

PR is the package revision variable. Any time a recipe is updated that should require the package to be rebuilt, this variable should be incremented.

inherit autotools brings in support for the package to be built using autotools, and thus no other instructions on how to compile and install the software are needed unless something needs to be customized.

S is the source directory variable. This specifies where the source code will exist after it is fetched from SRC_URI and unpacked. The default value is ${WORKDIR}/${PN}-${PV}, where PN is the package name and PV is the package version. Both PN and PV are set by default using the filename of the recipe, where the filename has the format PN_PV.bb.

Example HelloWorld recipe using a single source file

This example shows a simple case of building a helloworld.c file directly using the default compiler (gcc). Since it isn’t using autotools or make, we have to tell BitBake how to build it explicitly.


DESCRIPTION = "HelloWorld"
SECTION = "examples"
SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"
do_compile() {
    ${CC} ${CFLAGS} ${LDFLAGS} helloworld.c -o helloworld
do_install() {
    install -d ${D}${bindir}
    install -m 0755 helloworld ${D}${bindir}


In this case, SRC_URI specifies a file that must exist locally with the recipe. Since there is no code to download and unpack, we set S to WORKDIR since that is where helloworld.c will be copied to before it is built.

WORKDIR is located at ${OETREE}/<build directory>/tmp/work/cortexa7hf-vfp-neon-poky-linux-gnueabi/<package name and version> for most packages. If the package is machine-specific (rather than generic for the cortexa7hf architecture), it may be located in the imx7dsmarc-poky-linux-gnueabi subdirectory depending on your hardware (this applies to kernel packages, images, etc).

do_compile defines how to compile the source. In this case, we just call gcc directly. If it isn’t defined, do_compile runs make in the source directory by default.

do_install defines how to install the application. This example runs install to create a bin directory where the application will be copied to and then copies the application there with permissions set to 755.

D is the destination directory where the application is installed to before it is packaged.

${bindir} is the directory where most binary applications are installed, typically /usr/bin.

For a more in-depth explanation of BitBake recipes, syntax, and variables, see the Recipe Chapter of the OpenEmbedded User Manual.

Setup eMMC

Setting up eMMC usually is the last step at development stage after the development work is done at your SD card or NFS environments. From software point of view, eMMC is nothing but a non-removable SD card on board. For SMARC-FiMX7, the SD card is always emulated as /dev/mmcblk0 and on-module eMMC is always emulated as /dev/mmcblk2. Setting up eMMC now is nothing but changing the device descriptor. 

This section gives a step-by-step procedure to setup eMMC flash. Users can write a shell script your own at production to simplify the steps.

First, we need to backup the final firmware from your SD card or NFS.

Prepare for eMMC binaries from SD card (or NFS):

Insert SD card into your Linux PC. For these instructions, we are assuming: DISK=/dev/mmcblk0, "lsblk" is very useful for determining the device id.

For these instruction, we are assuming: DISK=/dev/mmcblk0, "lsblk" is very useful for determining the device id.

$ export DISK=/dev/mmcblk0

Mount Partitions:

On some systems, these partitions may be auto-mounted...

$ sudo mkdir -p /media/boot/
$ sudo mkdir -p /media/rootfs/
for: DISK=/dev/mmcblk0
$ sudo mount ${DISK}p1 /media/boot/
$ sudo mount ${DISK}p2 /media/rootfs/
for: DISK=/dev/sdX
$ sudo mount ${DISK}1 /media/boot/
$ sudo mount ${DISK}2 /media/rootfs/


Copy zImage to rootfs partition:

$ sudo cp -v zImage /media/rootfs/home/root

Copy uEnv.txt to rootfs partition:

Copy and paste the following contents to /media/rootfs/home/root ($ sudo vim /media/rootfs/home/root/uEnv.txt)

mmcroot=/dev/mmcblk2p2 ro
mmcrootfstype=ext4 rootwait fixrtc
mmcargs=setenv bootargs console=${console} root=${mmcroot} rootfstype=${mmcrootfstype} ${optargs}
uenvcmd=run loadzimage; run loadfdt; run mmcboot

Copy device tree blob to rootfs partition:

$ sudo cp -v zImage-imx7d-smarcfimx7.dtb /media/rootfs/home/root/imx7d-smarcfimx7.dtb
$ sudo cp -v zImage-imx7s-smarcfimx7.dtb /media/rootfs/home/root/imx7s-smarcfimx7.dtb 

Copy real rootfs to rootfs partition:

$ pushd /media/rootfs
$ sudo tar cvfz ~/smarcfimx7-emmc-rootfs.tar.gz .
$ sudo mv ~/smarcfimx7-emmc-rootfs.tar.gz /media/rootfs/home/root
$ popd

Remove SD card:

$ sync
$ sudo umount /media/boot
$ sudo umount /media/rootfs

Copy Binaries to eMMC from SD card:

Insert this SD card into your SMARC-FiMX7 device.

Now it will be almost the same as you did when setup your SD card, but the eMMC device descriptor is /dev/mmcblk2 now.

$ export DISK=/dev/mmcblk2

Erase SD card:

$ sudo dd if=/dev/zero of=${DISK} bs=1M count=16

Create Partition Layout:

$ sudo sfdisk --in-order --Linux --unit M ${DISK} <<-__EOF__

Format Partitions:

$ sudo mkfs.vfat -F 16 ${DISK}p1 -n boot
$ sudo mkfs.ext4 ${DISK}p2 -L rootfs

Mount Partitions:

$ sudo mkdir -p /media/boot/
$ sudo mkdir -p /media/rootfs/
$ sudo mount ${DISK}p1 /media/boot/
$ sudo mount ${DISK}p2 /media/rootfs/

Install binaries for partition 1

Copy uEnv.txt/zImage/*.dtb to the boot partition

$ sudo cp -v zImage uEnv.txt /media/boot/

Install Kernel Device Tree Binary

$ sudo mkdir -p /media/boot/dtbs
$ sudo cp -v imx7d-smarcfimx7.dtb imx7s-smarcfimx7.dtb /media/boot/dtbs

Install Root File System

$ sudo tar -zxvf smarcfimx7-emmc-rootfs.tar.gz -C /media/rootfs


Unmount eMMC:

$ sync
$ sudo umount /media/boot
$ sudo umount /media/rootfs


Switch your Boot Select to eMMC and you will be able to boot up from eMMC now.

version 1.0a, 8/08/2017

Last updated 2017-8-08